658 research outputs found

    Modified Laplace transformation method and its application to the anharmonic oscillator

    Full text link
    We apply a recently proposed approximation method to the evaluation of non-Gaussian integral and anharmonic oscillator. The method makes use of the truncated perturbation series by recasting it via the modified Laplace integral representation. The modification of the Laplace transformation is such that the upper limit of integration is cut off and an extra term is added for the compensation. For the non-Gaussian integral, we find that the perturbation series can give accurate result and the obtained approximation converges to the exact result in the N→∞N \to \infty limit (NN denotes the order of perturbation expansion). In the case of anharmonic oscillator, we show that several order result yields good approximation of the ground state energy over the entire parameter space. The large order aspect is also investigated for the anharmonic oscillator.Comment: 26 pages including tables, Late

    "Qué Dios es ese que adoras?": The Construction of Spectatorship in Sor Juana's Loa for The Divine Narcissus

    Get PDF
    In principle, this loa’s simple plot, the perfect symmetry of its characters, and its religious and political orthodoxy leave little room for the audience’s agency or imagination. However, a closer examination reveals that, far from offering the kind of straightforward views and statements that one might expect from a work of such apparent simplicity, formal and conceptual elements are interwoven so as to elicit multiple, simultaneous, and conflicting readings. Simply put, the loa is designed to elicit questions, rather than to offer answers. Such questions, in turn, point towards a central position — the reader’s or spectator’s — around which the entire play gravitates. And yet, this center is constructed on such terms that it becomes a vanishing point: a presence as well as an absence, an inside and an outside, a constituting and a constituted gaze. (MB, Article in English

    Experimental Investigation of Shock-Cell Noise Reduction for Single Stream Nozzles in Simulated Flight

    Get PDF
    Seven single stream model nozzles were tested in the Anechoic Free-Jet Acoustic Test Facility to evaluate the effectiveness of convergent divergent (C-D) flowpaths in the reduction of shock-cell noise under both static and mulated flight conditions. The test nozzles included a baseline convergent circular nozzle, a C-D circular nozzle, a convergent annular plug nozzle, a C-D annular plug nozzle, a convergent multi-element suppressor plug nozzle, and a C-D multi-element suppressor plug nozzle. Diagnostic flow visualization with a shadowgraph and aerodynamic plume measurements with a laser velocimeter were performed with the test nozzles. A theory of shock-cell noise for annular plug nozzles with shock-cells in the vicinity of the plug was developed. The benefit of these C-D nozzles was observed over a broad range of pressure ratiosin the vicinity of their design conditions. At the C-D design condition, the C-D annual nozzle was found to be free of shock-cells on the plug

    Thermal behaviour of rebars and steel deck components of composite slabs under natural fire

    Get PDF
    Most of the studies involving composite slabs under fire follow the standard fire scenario described by the ISO 834 curve, disregarding the cooling-phase. However, recent studies show that this phase is equally important, as it can lead to the collapse of the structure. Therefore, the present research carried out a parametric study, using numerical models, validated through experimental tests, to evaluate the thermal behaviour of the composite slabs components under natural fire. The results showed that the maximum temperatures in the reinforcement bars occur during the cooling-phase, reaching temperatures up to 300% higher than at the heating-phase, on the steel deck occur at the end of heating, and that the concrete thickness above the steel deck influences the temperature of these components. Also, during the cooling-phase, a “heat bubble” effect is observed on the ribs of the composite slabs, where the reinforcement bars are normally placed. These results highlight the importance of considering different natural fire scenarios, in the structural performance and safety of composite slabs, since during the cooling-phase there is still heat transfer between the elements, which can lead to slab failure. New parameters are proposed to find the temperature of each component for different fire ratings

    Free jet feasibility study of a thermal acoustic shield concept for AST/VCE application: Single stream nozzles

    Get PDF
    A technology base for the thermal acoustic shield concept as a noise suppression device for single stream exhaust nozzles was developed. Acoustic data for 314 test points for 9 scale model nozzle configurations were obtained. Five of these configurations employed an unsuppressed annular plug core jet and the remaining four nozzles employed a 32 chute suppressor core nozzle. Influence of simulated flight and selected geometric and aerodynamic flow variables on the acoustic behavior of the thermal acoustic shield was determined. Laser velocimeter and aerodynamic measurements were employed to yield valuable diagnostic information regarding the flow field characteristics of these nozzles. An existing theoretical aeroacoustic prediction method was modified to predict the acoustic characteristics of partial thermal acoustic shields

    On the relationship between sloppiness and identifiability

    Get PDF
    25 páginas, 11 figuras, 2 tablasDynamic models of biochemical networks are often formulated as sets of non-linear ordinary differential equations, whose states are the concentrations or abundances of the network components. They typically have a large number of kinetic parameters, which must be determined by calibrating the model with experimental data. In recent years it has been suggested that dynamic systems biology models are universally sloppy, meaning that the values of some parameters can be perturbed by several orders of magnitude without causing significant changes in the model output. This observation has prompted calls for focusing on model predictions rather than on parameters. In this work we examine the concept of sloppiness, investigating its links with the long-established notions of structural and practical identifiability. By analysing a set of case studies we show that sloppiness is not equivalent to lack of identifiability, and that sloppy models can be identifiable. Thus, using sloppiness to draw conclusions about the possibility of estimating parameter values can be misleading. Instead, structural and practical identifiability analyses are better tools for assessing the confidence in parameter estimates. Furthermore, we show that, when designing new experiments to decrease parametric uncertainty, designs that optimize practical identifiability criteria are more informative than those that minimize sloppinessThis project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 686282 (“CANPATHPRO”) and from the Spanish government (MINECO) and the European Regional Development Fund (ERDF) through the projects “SYNBIOFACTORY” (grant number DPI2014-55276-C5-2-R), and “IMPROWINE” (grant number AGL2015-67504-C3-2-R)N
    • 

    corecore